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The majority of contemporary methods used in the predictions of the deformation 
behaviour of non-homogeneous materials as a response to external loads (similarly in the 
case of various physical characteristics) concern composites of the first type [ 1 ], i.e. 
compact systems consisting of a matrix with segregated solid particles. Various quasi- 
homogeneous and quasi-isotropic models of compact materials are used and the structural 
aspects are considered at most by empirical modifications of relations obtained. The 
introduction of the actual geometrical structure or at least of an adequate structural 
model, together with the physical properties of the components, into the description of 
the composites, particularly composites of the second and third types (with aggregated 
solid particles, with or without fluid phase, either continuous or discrete) [1] has not 
been customary so far, although it is impossible to expect a good agreement of theoretical 
and actual results without it. This paper analyses, on the one hand, adequate models of 
quasi-homogenous compact composites and presents, on the other hand, structural 
models of composite materials (both compact and incompact, [2, 3] ), enabling the 
introduction of the effects of both the geometrical arrangement of the structure and 
the interphase interactions, including the effects of external environment. 

1. Quasi-homogenous and quasi-isotropic 
models of compact materials 

The majori ty of  relationships describing the elas- 
ticity and various other properties (thermal con- 
ductivity, permitt ivity,  etc.) of  Type I composite is 
based on the model  of  suspension of  a Newtonian 
viscous fluid using solid spheres, as a rule [4 -12 ]  ; 
the equations of  hydrodynamics  and elasticity for 
high ratios of  shear moduli  Gp/Gm (corresponding 
to the case of  dispersion of  solid particles p in a 
yielding matrix m), assuming perfect bond (along 
the whole interface) are analogous*, 0n ly  ~ being 
replaced by E. 

For the prediction of  the behaviour of  the 

composites the variation methods seem to be most 
promising, since they enable, to a certain extent ,  
to include both geometric and physical factors. 

If  it is not  possible to determine whether 
the phase is continuous or dispersed or, in the 
case of  a continuous phase, the extent  of  phase 
continuity,  two extreme quasi-homogeneous and 
quasi-isotropic models of  phase arrangement can 
assist at least an informed assessment of mutual 
phase interaction and its influence on the proper- 
ties of  a compact  (pore-free) composite,  namely: 
(a) parallel model  (the so-called hard system); and 
(b) series model (the so-called soft system); differ- 
entiated in accordance with the direction of  the 

*Analogous relations have been deduced for various other systems, e.g. for solid ellipsoid inclusions in a viscous matrix 
[13] (with the possibility of modelling spherical, tabular as well as fibrous shapes of dispersed particles), for elastic 
spheres in a viscous matrix [14], for solid spheres in an elastic matrix [15-17], for elastic spheres in an elastic matrix 
[18-20], for spherical pores in an elastic matrix [21], for spherical pores in a solid (brittle) matrix [22], for inclusions 
or pores surrounded by a matrix shell [21] or by a transition layer [ 15, 23, 24], etc. 
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Figure 1 Parallel (hard) and series (soft) model of a 
composite compact material (with equal axial defor- 
mations or equal axial stresses), e = longitudinal defor- 
mation, cr = stresses, e' = transverse deformation. 

stresses in respect of  the direction of  the layers 
(Fig. 1). 

In the parallel (hard) model the contact sur- 
faces are characterized by equal axial strains of  
both phases (and extreme shear stresses), in a 
series (soft) model by equal stresses (without 
shear stresses). An elastic strain of  a real quasi- 
homogeneous system lies between the extremes 
represented by the models and includes a number 
of  distort ions and rotations from shear stresses 
of  the phases (Fig. 2). 

If  we observed elastic deformability of  the 
extreme models under load (characterized by the 
moduli of  elasticity El ,  E2 and the Poisson coeff- 
icients/l~,/~z of  the components and their volume 
quotas V1, V2) we obtain, in accordance with [2] 
for the parallel system consisting of  two phases: 

it! 
Figure 2 Model of real system with stresses induced in 
phases. 

1 E1E2 
K s = - -  

3 (1 --  2u~)V~& + (1 -- 2 r e )V2& 
(3) 

K~ = 1 ( 1 - -  2#~) ( 1 - -  2#2) 

3 (1 -- 2/.t2)VIE 1 + (1 -- 2#,)V2E2 

hold. See Appendix A. 
These formulae show at first sight, for example, 

that the difference of  the moduli of  both phases 
exercises a far greater influence in the series system 
than in the parallel system, and that the properties 
of  the series system are determined more or less by 
the less solid component. In an actual system the 
phase relationship varies in accordance with the 
modifications of  the volume representation of  the 
components. The continuity of  one or the other 
phase may prevail and the physical properties of  
the system, therefore, will lie somewhere between 
the extremes mentioned above. 

It has been proved [2, 32] that the elastic 

/a~ = /a,(1 + #2)(1 -- 2/-t2)VlE1 q-/a2(1 +/a~)(1 --21a,)V2E= 

(1 --/~2) (1 -- 2/-t2)V1E1 + (1 + / q ) ( 1  -- 2/at)VzEa 

Es h = [(1 + #2)V1EI + (1 + lal)VzEz] [(1 -- 2#2)V1E~ + (1 "2g~)V2E21 

(1 - -#2)(1  -- 21aa)V1E1 + (1 + # , ) (1  -- 21al)V2E2 

(1) 

Similar relations were deduced in [25]. Analo- 
gously we obtain for the series system 

1 V1 V2 
- (2) 

Es s E 1 E2 

I~1V2E2 + #2 V1Et 
VxE2 + V2E1 

strain of  every concrete compact system, taking 
place on the principle of  minimum elastic strain 
energy, remains a compromise between its hard 
and soft behaviour. If  shear stresses are eliminated 
from the description, it holds for every physical 
constant that 

1 - 1 [~-sS+~sh] (4) 
Cs 2 

or, specifically for the modulus of  elasticity E, 
2(ESE sh) ~ 

Similarly for a volume modulus of  a compact E s - (5) 
system the limits E s + Es h 

, s Esh) ~Sometimes the experimental values agree with other, mostly empirically derived functions, such as E s = ~(E s + 
o r  

log e = ~(log Eg + log e~) .  
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for Poisson's coefficient 

h s s h 
PsEs + PsEs 

Us = s (6) 
E s + Es h 

and for the volume ratio K 

K s - (7) 
Kg + 

The common shortcoming of  the afore- 
mentioned models is the fact that their formulae 
describe equally the elasticity of structurally 
different systems, such as the system characterized 
by a perfect mutual interspersal of  two continuous 
phases, a system in which one phase is dispersed in 
the other, or a compact system of two discrete 
phases. Another defect is the impossibility of  
replacing one of  the solid phases with a fluid 
(gaseous or liquid) phase, which means that it is 
impossible to use these models for the description 
of  porous systems. 

2. Structural models of granular composites 
The basic step to be taken to eliminate the above- 
mentioned defects is the introduction of a defined 
model o f  structure. The studies made so far have 
shown that it is of  no importance in which way 
the model is defined, i.e. if it consists, for example, 
of  spherical, cubic, ellipsoidal or other elements. 
The principal effect is the realization of struc- 
turality, and consequently the more probable 
picture of  the history of  stresses and strains on the 
one hand, and the introduction of  the inner 
surface, without which no structural model can 
afford sufficient generalization, on the other hand. 

In accordance with the arrangement of  the filler 
in the system the concrete granular composites 
can be, generally, of  dual character: the filler is in 
the matrix either segregated or aggregated [1]. In 
accordance with this circumstance the volume 
representation and the shape of the binder ele- 
ments (bridges) of  the system differ. The filler, 

as a set of  discrete particles, can be considered 
further in two boundary forms: gaseous and 
compact.  In the first case the materials are of 
foam type, usually with a single solid phase; 
in the second case the materials consist of  two 
or more phases with or without pore (continuous 
or  discontinuous). These two cases are charac- 
terized, once again, by the shape of the binder 
elements. 

An analysis of  various concrete systems has 
shown that in all cases the description of  a real 

system modelling them, i.e. incorporating both 
structurality and the inner surface, necessitates 
only two fundamental structural quasi-octahedral 
units: a convex node (Fig. 3) and a concave node 

(Fig. 4). (The meaning of concrete, real and ideal 
solid material is the same as it is currently used in 
liquids). 

The convex node can be accepted as a basic 
structural element of  two-phase systems of the 
first and the second types, both  of  the foam type, 
with separate pores (bubbles) (Fig. 5), and com- 
pact, with separate inclusions (Fig. 6), which are 
more yielding than matrices, and of  foam-like 
system of  the third type with interconnected 
bubbles, i.e. a continuously porous type (Fig. 7). 
The simplest case, in which the bubbles or inclu- 
sions are spherical in shape and are of  equal size, 
can be described by an ideal model accurately 
defined geometrically. With reference to the afore- 
mentioned statement that it is not the shape, but 
the volume quota, together with the inner surface, 
that are decisive, it is possible to use: 

1. for the case of  discontinued porosity, i.e. 
separate (segregated) pore (inclusions), a simple 
cubic (orthogonal) skeleton ~ constructed of cubic 
centres interconnected by slabs in all directions 
(in the selected system of Cartesian coordinates) 
according to Fig. 8; 

2. for the case of  a continuously porous system 
(of a foam-like type) a model according to Fig. 9 
with a spatially orthogonal skeleton w . 

:~The selected cubic skeleton is intermediate between the ext reme structural arrangements  with m i n i m u m  sufficient 
number  o f  connecting elements  in the  form of  a te t rahedron on the  one hand and the infinite number  of  beams in the 
form of  a spherical skeleton on the  other hand.  
w  bubbles  of  equal size of  the  void (or yielding) phase are assumed in the corners o f  the  cubic unit  volume. This 
corresponds with the  so-called least-density arrangement  o f  equal spheres (in the crossing points  o f  three planes o f  an 
orthogonal  spatial network).  The densest  ar rangement ,  on the  other hand,  is the  allocation of  spheres in the crossing 
points  of  four planes, oriented in accordance with the body  diagonals of  a cube. The spheres are then  located in the 
corners o f  two te t rahedrons  and one octahedron.  For the  case o f  intersecting bubbles the  inter-spheral spaces would 
acquire the form of  quasi-tetrahedras and quasi-cubes, represented at a ratio o f  2 : 1, with spherically convex surfaces. 
With regard to the  possibility of  expressing the densi ty (proport ionate representat ion) of  the  bubbles by the  depths  
of  their mutua l  intersections at their thinnest  location, it is not  necessary to take this factor into account .  
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Figure 3 Convex node with solid phase half-bridges in a 
unit volume of a foam-like type. 

Figure 5 Foam-like material with separated pores. 

In concrete foam-like systems, however, the 
continuous and discontinuous porosi ty usually 
exist simultaneously in the majori ty of  cases (i.e. 
only some of  the bubbles being interconnected).  
It is obvious that  such a system may be considered 
as a compromise between the ideal systems with 
continuous and discontinuous porosity.  In the 
corresponding model of  a real foam-like system 

there will be, apart from the centres and beams of  

the spatial cross, also tabular elements (Fig. 10) �82 . 
In more complex and general cases the bubbles 

(inclusions) may be of  different size and/or  a 
different shape. Consequently, the dimensions of  
the centres, beams and slabs will be different for 
the individual nodes and systems. While, for 
example, the model of  an ideally continuous 
system (in accordance with Fig. 9) can be defined 

/ /  

i 

i _ L  

Figure 4 Concave node with solid phase half-bridges in a 
unit volume of a bonded filler type system. 

Figure 6 Compact system with separated yielding inclu- 
sions. 

by a relative linear dimension of  the cubic centre 
(and of  the cross-section of  the beams) a referred 

to the linear dimension of  the cubic system (the 
enveloping cube), in a general case the describing 
quantities will be statistical functions, i.e. the sizes 
of  the centres, beams, enveloping cube and, conse- 
quently, the partial volumes and inner surface. For 
the further calcula,tions of, for instance, the elastic 
characteristics of  the system either these functions, 
or - more simply - their mean values will be used. 

For an ideal model the volume of  the centre is 

Vc = a 3 ( 8 )  

the volume of  the beam 

V b = 3 a 2 ( 1 - - a )  (9) 

and the whole volume of  the skeleton 

V k = a 2 ( 3 - - 2 a )  (10) 

from which 

a = 1 + cos 1 arc cos (1 - - 2V k) .  (11) 

�82 From the discontinued porosity system (Fig. 8) as the first extreme, the gradual removal of parts of slabs makes a 
transition to a partly continuous porosity system, (Fig. 10) and by a complete elimination of slab components to the 
second extreme case, the ideal continuous system (Fig. 9). 
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Figure 7 Foam-like material with interconnected pores. 

The cross-section of  the centre and the area of  
the surface of  intersection of  the beams with the 
surface of  the system (equal to cross-section of  
the beam) is 

Ac = A b = a 2 (12) 

Modulus of  elasticity E s and Poisson's coeffic- 
ient gs of  an Meal continuously porous system 

( o f  a foam-like type)  using the combination of  
hard and soft behaviour (in the sense of  the fore- 
going definitions) according to Equation 5 and 6 is: 

6ca 
E s - (13) 

6 - - C  

where 

3 /1--D + 3a# 
Us - 6 -- C (14) 

C = 2(1 - -a ) [ (1  - 2 # ) ( 1  - - A )  

+ 2(1 --/~) (1 - B ) I ,  

D = 2(1 - -a )  [(1 -- 2#)(1 - - A )  

--(1 + # ) ( 1 - B ) I ,  

Figure 8 Unit volume of an ideal discontinuous porosity 
system of a foam-like type. 

Figure 9 Unit volume of an ideal continuous porosity 
system. 

2(1 --,u)(1 - -a )  
A =  

2(1 -- 2,u) - -a (1  - - 3 # ) '  

2(1 - u ) ( 1  - a )  
B = (15) 

( 2  - u) - a 

and E and # are elasticity constants of  the material 
of  the skeleton. Should the skeleton consist of  
more than one phase, the elasticity constants are 
obtained from Equations 1 and 2 by the mixing of  
the properties of  the components using Equation 5 
or Equation 6, respectively. (See also Appendix B). 

Analogously it is possible to determine the 
elastic constants also for the model of  discontinued- 
porosity foam-like system or the intermediate case 
(party continuous system), i.e. the model of a real 
foam-like system. 

The concave node can be used as the basic struc- 
tural element of  two-phase systems of  the second 
type and three-phase systems of  the third type 
(with aggregated filler and continuous or discon- 
tinuous porosity, Fig. 11). The simplest model of  
a real continuous porosity system is a structural 

.1 �84 

Figure 10 Unit volume of a real continuous porosity 
system of a foam-like type. 
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Figure 11 Schematic section of a concrete continuous 
porosity system of the bonded filler type. 

cubic (orthogonal) unit* in accordance with 
Fig. 12, originating by  supplementing the system 
in accordance with Fig. 10 with further cubic 
elements t .  As the skeleton of  this model  replaces 
both  solid phases present in the system ~, it is 
necessary in further considerations to work with 
an idealized material. It is assumed that its mech- 
anical and elastic properties correspond with the 
properties of a quasi-compact material obtained 
in accordance with Equations 1, 2 and 4 on the 
basis of  the properties of  the components  and 
their volume participation. 

In a more accurate description it is possible to 
use, once again, the orthogonal model and the 
influence of  the different shape and size of  the 
centres and, consequently,  the different sizes of  
the connecting bridges in the individual nodes 
and in the system, similarly as the influence of  
the changes of  the inner surface (due, for instance, 
to the change of  the surface characteristics of  the 
filler) can be described statistically. The unit 
model of  a real continuous porosi ty system of  the 
bonded filler type (in accordance with Fig. 12) 
can be defined by  the relative linear dimensions 
of  the cross-section of  the beam a and the centre 
b (with regard to the linear dimensions of  the 
cubic system), while in a general case the des- 
cribing quantities will be represented by statistical 
functions (size of  centres, beams, enveloping cube, 
partial volume, inner surface) which will be used 

q. 

l u L / /  
Figure 12 Unit volume of a real continuous porosity 
system of the bonded filler type. 

for further calculations of, for instance, the elastic 
properties of  the system either directly or by 
means of  their mean values. 

For the model  of  a real system, provided 
a < b < 1, it holds that the volume of  the centre 

Ve = b 3 (16) 

the volume of  the beams 

V b = 3 a 3 ( 1 - - b )  (17) 

and the volume of  the whole skeleton 

V k = 3 a 2 ( 1 - - b ) + b  3 (18) 

The cross-section of  the centre and the beams are 

A c = b 2 (19) 

A b = a 2 (20) 

Modulus of  elasticity E s and Poisson's co- 
efficient /~s of  a real continuous porosity system 

(o f  the bonded filler type)  are, using once again 
the combinat ion of  the soft and hard behaviour 
of  the skeleton (in the meaning of  the foregoing 
definition) according to Equations 5 and 6 respec- 

tively, 
6Ea 2 

E s = (21) 
3 + ( M - - N +  2P) 

~s = 3a~ + N + P (22) 
3 + ( 3 / - - N  + 2 P ) '  

*Similarly as in the case of porous systems of foam-like type it is not necessary to consider the location of the nodes 
in the case of the continuous porosity system of the bonded filler type, assuming the identity of binder and filler. The 
density (proportionate representation) of the solid phase (skeleton) in the system can be influenced, the size of spheri- 
cal filler modes remaining the same, by the length of binder bridges. 
?It is obvious that in contradistinction from the systems of foam-like type, the continuous porosity systems cannot 
be considered as a compromise between, for example, the ideal continuous porosity system and a compact system. The 
principal reason is that in contradistinction from the foregoing there are two spherical stress elements (if the system 
is spherically loaded) with different principal strains. 
SThe dispersed phase is concentrated in the particles modelled by the cubic centres, the matrix in connecting bridges 
modelled by the prisms, and the fluid phase (if present) fills the remainder of the space in the cubic system. 
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where 

(1 + g)(1 --2p) 
M = 3 ( 1 - - b )  

1 - - p  

N = (1--2/ / )  1 - -b )  l - t5 a)(1 - -R)  

{[ ~t + a ] ( 1 - - S )  a(b~b a)(1--T)} P = (1 +U) ( 1 - - b )  l _ / ~  

b(b 2 _a2)(1  __//)2 + 2a(1 --b)(1 --U)[a(1 --p)  + (b --a)(1 + U)] 

Q = ha(1 _//)2 + 2 a ( I  - - b ) ( I  --2//) [a(1 - -p)  + (b - - a ) (1  +p) ]  

R = 

S = 

(a + b)(1 --//) + 2bpQ 
a(1 - U )  + (b --a)(1 +/ l )  

b (b ~ -- a 2) (1 -- p2) + 2a(1 -- b) (1 -- p) [a(1 -- p) + (b -- a) (1 -- 2p)] 

T = 

b3(1 _//)2 + a(1 --b)(2 --P) [a(1 --#) + (b --a)(1 -- 2p)] 

(a + b)(1 --~) - -bus  
a(1 --//) + (b --a)(1 --2//) 

(23) 

and E and # are elasticity constants obtained 
from Equations 1 and 2 using Equations 5 and 6 
respectively by mixing the properties of the com- 
ponents. (See also Appendix C). 

3. Interaction with external environment 
All considerations and formulae derived so far 
hold under the assumption that the pores are not 
filled with yet another phase, i.e. provided the 
voids of the system do not transfer stresses. 
Actually, however, there is always a state of 
equilibrium between the system and its ambient 
environment, and the volume of continuous 
pores is filled with fluid phase, which obviously 
modifies both the elasticity constants of the 
system and its other physico-mechanical proper- 
ties including its strength. The inclusion of inter- 
action of the solid skeleton with the fluid phase 
is allowed by the inner surface of the system. 

A continuous porosity system with filled pores 
can be considered in our further considerations 
as a quasi-compact two-phase system with one 
phase consisting of the solid' skeleton and the 
other phase of the liquid filling its pores. 

In the first extreme case with empty inner 
volume, the sys t em-wi th  regard to the possi- 
bility of free displacement of the fictitious void 
phase along its boundary with the solid skeleton - 
will be a soft one, and the elastic constants ks, 
//s can be considered as known, determined by 
Relations 21 and 22 respectively. Thus the first 

(lower) boundary of elastic constants of the con- 
tinuous porosity systems interacting with ambient 
environment is determined. 

In other cases, when the inner volume is filled 
with a liquid, it is necessary to determine first the 
elasticity constants of the skeleton as a phase of 
the system under consideration. Taking into 
account the assumption of the regular spatial 
proportionate representation of phases, and, 
consequently, also of the elements of the skeleton, 
justified by the accepted quasi-phase concept of 
the structure Of the continuous porosity system, 
it follows for the modulus of elasticity of the 
skeleton E k in contradistinction from the modulus 
of elasticity of the system in accordance with 
Equation 21 that 

~k = E[3a2(1 - b )  + b ~1 (24) 

or, using Equation 22, 

Ek = EVk (Vk~<l) (25) 

For the volume modulus of the skeleton, ana- 
logously 

EVk 
Kk -- 3(1 -- 2p)' (26) 

However, since it must hold simultaneously that 

& 
Kk - 3(1 -- 2/lk) (27) 

Poisson's coefficient //k of the skeleton obviously 
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equals/a of the material of which it is made, i.e. 

/% = /a. (28) 

From Equation 2 for the soft compact system 
it is possible to determine, using the constants 
E s and /a s of the dry continuous porosity system 
and Ek, /ak of the skeleton, the fictitious elasticity 
constants Efo,/afo, of the empty void phase 

Efo = 
Vo(E k -- VkEs) 

(29) 
EsEk 

v.Ek --/ak VkEs 
/afo = ( 3 0 )  

Ek - -  V k &  

where 11o is the volume of the void phase Vo = 
(1 - -  V k ) .  

The real value of the fictitious elasticity con- 
stants of the empty void phase shows that the 
elasticity of the cellular system is modified by the 
co-operation of the fluid phase, particularly after 
the liquid has entered the system from the outside 
environment. 

In the second extreme case the whole interior 
volume will be filled with a liquid. This situation, 
however, occurs with a different measure of 
spontaneity which corresponds also with the bond 
of a liquid to the inner surface of the system. The 
first limiting case can be considered in the case of 
such bond of the liquid at the interphase boundary 
with the solid skeleton, that it makes its escape 
from the inner volume of the system impossible, 

phase in the liquid state which solidifies in the 
system after it has filled the voids, e.g. polymer- 
impregnated concrete). Nevertheless, as soon as 
the soft bond be admitted (permitting mutual 
displacement), the flow of the liquid phase would 
necessarily follow. 

If we consider the solid phase and the void 
phase as separate infrastructures, we can use the 
equations formerly derived for the compact 
system in a similar manner as for the void infra- 
structure. In the given case Equation 1 will be 
applied to the hard system consisting of the void 
subsystem of the volume Vf = (1 -- Vk), with 
elasticity constants El0 and /afo (Equations 
29, 30) and a liquid of a modulus Kf (and, under 
given assumptions, with Efmin = 3(1 - 2/af)Kf 
and /afmax = 1/2). Thus we obtain equations for 
elasticity constants of the void infrastructure (for 
complete and irreversible filling of voids with a 
liquid) as follows: 

E~o [Efo + 3 (1 -- 2/afo)Kf] 
Ef = (31) 

Ero + 2(1 +/afo)(1 --2/afo)K~ 

El0 + (1 +/afo)(1 --2/afo)Kf 
/a~ = ( 3 2 )  

Efo + 2(1 + / a f o ) ( 1  - -  2/afo)Kf 

The whole superstructure of the completely 
and irreversibly liquid-filled cellular system will 
then have elastic properties corresponding with 
the hard co-operation of both infrastructures 
(solid and fluid) in accordance with Equation 1. 

E = 

/a = 

[(1 +/af)VsE s + (1 +/as)VfEf] [(1 -- 2/af)VsE s + (1 -- 2/as)VfEf] 

(1 +/af)(1 -- 2/af)VsE s + (1 +/as) (1 -- 2/as)VfE f 

/as(a +/af) (1 -- 2/af)VsE s +/af(1 +/as) (1 -- 2/as)VfE f 

(1 + #f)(1 -- 2/af)VsE~ + (1 + Us)(1 -- 2/as)VfEf 

(33) 

(34) 

although it is a system open to the transport of 
the matter over its exterior boundary. In the 
second limiting case the liquid will not be bound 
to the inner surface of the system (which corre- 
sponds with its lax entry and escape into and 
from the system, respectively). 

In the first limiting case, consequently, there 
must exist a hard (in the introduced meaning of 
the term) bond not  only at the phase boundaries, 
but also between any adjacent molecules of the 
liquid, although afterwards it is hardly possible to 
consider the contents of the void phase of the 
cellular system as a liquid. (Such a case corresponds 
rather with a porous system filled with another 

Thus we have obtained the other (upper) 
boundary of the elastic constants of continuous 
porosity systems interacting with ambient environ- 
ment. 

Explicit expressions of elastic constants of a 
cellular system under the influence of the liquid 
within the defined region can be expected to 
depend on the moisture content of the ambient 
environment and the absorption potential of the 
system studied, determined primarily by the 
contact stresses of both phases similarly as by the 
relation of the pore dimensions and the viscosity 
of the liquid. 

Two examples (Figs. 13 to 15) show a comparison 

478 



. .  

x 
LU 

0 

...... 
t ~ . - f ~ "  I L;I 

- - ' X .  o - - ' -k- -  ?,1 

-mb,, I X:~lrreversibly 
Derived Equ0ti0n 40 "~aturated] 

o ExperimentQl results [431 (~ k 

Dried 

l 
02 0.4 0.6 0.8 1.0 

Partial filler volume 

Figure 13 Hypothetical and measured values of the 
Young's modulus of cement mortar plotted against its 
composition. 
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Figure 15 Hypothetical and measured value of Poisson's 
coefficient of resin concrete plotted against its com- 
position. 

of experimental results (as reported in [42] 
for cement mortar and in [43, 44] for polymer 
concrete) and theoretical values calculated in 
accordance with the aforementioned relationships 
[2] (Appendix D). Very good agreement can be 
observed both in the region corresponding with 
the first interval w and in the region corresponding 
with the third interval. In this region, the experi- 
mental values are close to theoretical values 
characteristic of the irreversibly saturated system 
for lower porosities. For higher porosities experi- 
mental values are close to theoretical values for a 
dry system with an empty or reversibly saturated 
interior volume. 
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Figure 14 Hypothetical and measured values of the 
Young's modulus of resin concrete plotted against its 
composition. 

The analysis has also shown that even for a 
relatively simple geometric arrangement the 
equations are of considerable complexity and 
any further "improvement", endeavouring greater 
accuracy is probably of no practical value, since 
there is a great number of further factors in 
every concrete material which cannot be effec- 
tively incorporated into the calculation anyway, 
however accurate it may be (e.g. technological 
factors). On the other hand the relations derived 
on the basis of the theory of structural continuum 
[2] afford more than merely quantitative results 
and can be used for the prediction of the behav- 
iour of granular materials in the whole possible 
extent of composite arragement, i.e. for the com- 
posites of the first as well as the third types, 
including their interaction with ambient environ- 
ment, which no other theory has achieved so far. 

Other physical properties (electrical, magnetic, 
thermal properties) are governed by similar laws 
to the elastic properties. Therefore, the adequacy 
of various formulation rules, particularly in the 
case of higher concentrations of the dispersed 
phase, such as are given in [4, 23, 33-36] without 
the introduction of structural parameters, is rather 
accidental; such relations should be used with 
caution and for the determination of informative 
values only. The introduction of an adequate 
structural model (and, consequently, of the inner 
surface and interphase boundaries) can yield 
relations for various physical properties of the 
composite analogous with those derived for elastic 
properties with a considerably higher agreement 
with reality. 

w Equally good accordance was demonstrated in [2] by a comparison of experimental results as reported in [45, 46] for 
hard-ductile two-phase alloy systems with theoretical values obtained from Relationships 5 and 6 for quasi-homogenous 
and quasi-isotropic models of compact material. 
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Although the general description of  the elasticity 
of  the system has been successfully mastered, no 
method has been found so far which would allow 
a general description of  the strength of  granular 
composites of  all three types �82 . It seems however, 
that it is the knowledge of  the deformation mech- 
anism and the behaviour in the process of  fracture 
and total failure that are more important for our 
understanding of  the properties of  the material 
rather than the absolute value of  its strength 
which cannot be determined reliably, even in the 
case of  homogenous materials, before a general 
energy theory on the basis of  statistical charac- 
teristics of  the material has been developed. 

Appendix A 
When neglecting the Poisson's coefficient /al = 

/a2 = 0 we obtain, as special cases, the known 
relations [2, 2 5 - 2 8 ]  for the parallel model 

Es h = E 1VI + E' 2 V 2 

and for the series model 

E1E2 

E1 V2 + E2V1 

The form of the relationships for thermal and 
electrical conductivity is analogous. Other models 
more accurate than the simple parallel and series 
systems have been derived by a number of  authors. 
For example, a combination of  the series and the 
parallel model was used for crystalline polymers 

[291. 
Naturally, the series and the parallel models 

can be combined in many possible ways, which 
was actually done by a number of  authors. These 
combinations usually result only in considerably 
more complex relations which, however, do not 
represent the actual structure of  the material and 
the interactions resulting from it, and can afford 
agreement with experimental results in special 
cases only, i.e. in those for which they had been 
derived, as a rule. Consequently, they are of  little 
value for a general description of  structural 
systems. It is also possible to choose a different 
geometry of  phases (e.g. square inclusions in the 
middle of  the matrix [30]); of  a more general 
use are variation procedures, e.g. [17, 31]. 

Appendix B 
The volume modulus of  such a system Ks due to 
outer hydrostatic pressure, i.e. if the pressure is 
applied to the exterior surfaces of  the skeleton 
only, situated on the surface of  the cubic system 
obtained by the same method is 

E K :  xt = (B1) 
3(1 -- 2/a) (1 -- F )  

where 
(1 - -  3 /a )  

F = ( 1 - - a ) -  A 
(1 - -  Z/a) 

If, on the other hand, the hydrostatic pressure 
is applied to the inner surface of  the skeleton 
(interior hydrostatic pressure), the volume 
modulus is 

E 
Ks int - (B3) 

3(1 - 2/a)F 

The superposition of  both effects yields the 
volume modulus of  the system exposed to hydro- 
static pressure which is the same as that for the 
solid phase of  the skeleton or the compact (non- 
porous) system of the same material, i.e. 

E 
K s - (B4) 

3(1 -- 2/a) 

Appendix C 
The volume modulus of  this system Ks due to 
external hydrostatic pressure, i.e. if the pressure 
is applied to the outer surfaces of the skeleton 
situated on the surfaces of  the cubic system, is 
obtained by the same procedure and is 

2E K~ ext" = (C 1) 
3(1 -- 2a/a) + M + 3 N  

If, on the other hand, the hydrostatic pressure 
is applied to the inner surface of the skeleton 
(internal hydrostatic pressure), the volume 
modulus is 

2E 
Ks int = 

6(1 -- 2/a) -- 3(1 -- 2a/a) --M + 3N 
(c2)  

The superposition of  both effects yields the 
volume modulus of  the system exposed to hydro- 
static pressure, which will be, once again, the 

�82 For some specific systems mostly empirical relationships have been derived [37-41] which, however are of very little 
general value. Endeavours to derive such relations theoretically have failed due to lack of knowledge of the constants 
or functions used in the analyses. 
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same as that  

i.e. 

Appendix D 
For the sake 

calculated for a compac t  material ,  

E 
Ks - 3(1 - -  2 # ) '  (C3) 

o f  clarity we summarize  the pro- 

cedure used for the de te rmina t ion  o f  elast ici ty 

constants  o f  a cont inuous  poros i ty  system of  

the  bonded  filler type :  

1. Vk, Vm, Vp relative parts o f  the vo lume 

of  skeleton,  mat r ix  and filler respect ively 

(V k = V m Jr- Vp). 
2. b = Vp 1/3, a = (Vm/3(1 - b ) )  u2 geometr ic  

parameters .  

3. E ,  # material  o f  the solid phase (according to 

Equat ions  1 ,2 ,  5, 6). 

4. Es,/as,  Vs system with  emp ty  interior  vo lume 

according to Equat ions  21 and 22. 

5. Ek,  #k o f  the skeleton according to Equat ions  

25 and 28. 

6. E f o , # f o  emPtY void phases according to 

Equat ions  29 and 30. 

7. K within  the limits o f  (0, Kf), where Kf is the 

vo lume module  o f  the l iquid.  

8. Ef,  #f  void infrastructures according to Equa- 

t ions 31 and 32. 

9. E,  # o f  the system according to Equat ions  33 

and 34. 
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